تجاوز إلى المحتوى الرئيسي
حل مسائل x
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

2-3x\left(4-x\right)-x^{2}=-16
اطرح x^{2} من الطرفين.
2-3x\left(4-x\right)-x^{2}+16=0
إضافة 16 لكلا الجانبين.
2-12x+3x^{2}-x^{2}+16=0
استخدم خاصية التوزيع لضرب -3x في 4-x.
2-12x+2x^{2}+16=0
اجمع 3x^{2} مع -x^{2} لتحصل على 2x^{2}.
18-12x+2x^{2}=0
اجمع 2 مع 16 لتحصل على 18.
9-6x+x^{2}=0
قسمة طرفي المعادلة على 2.
x^{2}-6x+9=0
أعد ترتيب عامل متعدد الحدود ليكون بشكل قياسي. ضع الشروط بالترتيب من الأس الأكبر إلى الأصغر.
a+b=-6 ab=1\times 9=9
لحل المعادلة، حلل عوامل الجانب الأيمن بالتجميع. يجب أولاً إعادة كتابة الجانب الأيمن كالتالي x^{2}+ax+bx+9. للعثور علي a وb ، قم باعداد نظام ليتم حله.
-1,-9 -3,-3
بما ان ab ايجابيه ، فa وb لها نفس العلامة. بما أن a+b سالب، فسيكون كل من a وb سالباً. إدراج كافة أزواج الأعداد التي تعطي الناتج 9.
-1-9=-10 -3-3=-6
حساب المجموع لكل زوج.
a=-3 b=-3
الحل هو الزوج الذي يعطي المجموع -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
إعادة كتابة x^{2}-6x+9 ك \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
قم بتحليل الx في أول و-3 في المجموعة الثانية.
\left(x-3\right)\left(x-3\right)
تحليل المصطلحات الشائعة x-3 باستخدام الخاصية توزيع.
\left(x-3\right)^{2}
أعد الكتابة على شكل مربع ثنائي الحد.
x=3
للعثور على حل المعادلات، قم بحل x-3=0.
2-3x\left(4-x\right)-x^{2}=-16
اطرح x^{2} من الطرفين.
2-3x\left(4-x\right)-x^{2}+16=0
إضافة 16 لكلا الجانبين.
2-12x+3x^{2}-x^{2}+16=0
استخدم خاصية التوزيع لضرب -3x في 4-x.
2-12x+2x^{2}+16=0
اجمع 3x^{2} مع -x^{2} لتحصل على 2x^{2}.
18-12x+2x^{2}=0
اجمع 2 مع 16 لتحصل على 18.
2x^{2}-12x+18=0
يمكن حل كل المعادلات بالصيغة ax^{2}+bx+c=0 باستخدام الصيغة التربيعية: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. وتقدم الصيغة التربيعية حلين، أحدهما عندما يكون ± جمعاً والآخر عندما يكون طرحاً.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 18}}{2\times 2}
هذه المعادلة بالصيغة العامة: ax^{2}+bx+c=0. عوّض عن a بالقيمة 2 وعن b بالقيمة -12 وعن c بالقيمة 18 في الصيغة التربيعية، \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 18}}{2\times 2}
مربع -12.
x=\frac{-\left(-12\right)±\sqrt{144-8\times 18}}{2\times 2}
اضرب -4 في 2.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 2}
اضرب -8 في 18.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 2}
اجمع 144 مع -144.
x=-\frac{-12}{2\times 2}
استخدم الجذر التربيعي للعدد 0.
x=\frac{12}{2\times 2}
مقابل -12 هو 12.
x=\frac{12}{4}
اضرب 2 في 2.
x=3
اقسم 12 على 4.
2-3x\left(4-x\right)-x^{2}=-16
اطرح x^{2} من الطرفين.
2-12x+3x^{2}-x^{2}=-16
استخدم خاصية التوزيع لضرب -3x في 4-x.
2-12x+2x^{2}=-16
اجمع 3x^{2} مع -x^{2} لتحصل على 2x^{2}.
-12x+2x^{2}=-16-2
اطرح 2 من الطرفين.
-12x+2x^{2}=-18
اطرح 2 من -16 لتحصل على -18.
2x^{2}-12x=-18
يمكن حل المعادلات من الدرجة الثانية مثل هذه المعادلة بإكمال المربع. لإكمال المربع، يجب أن تكون المعادلة بالصيغة x^{2}+bx=c.
\frac{2x^{2}-12x}{2}=-\frac{18}{2}
قسمة طرفي المعادلة على 2.
x^{2}+\left(-\frac{12}{2}\right)x=-\frac{18}{2}
القسمة على 2 تؤدي إلى التراجع عن الضرب في 2.
x^{2}-6x=-\frac{18}{2}
اقسم -12 على 2.
x^{2}-6x=-9
اقسم -18 على 2.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
اقسم -6، معامل الحد x، على 2 لتحصل على -3، ثم اجمع مربع -3 مع طرفي المعادلة. تجعل هذه الخطوة الطرف الأيسر من المعادلة مربعاً تاماً.
x^{2}-6x+9=-9+9
مربع -3.
x^{2}-6x+9=0
اجمع -9 مع 9.
\left(x-3\right)^{2}=0
عامل x^{2}-6x+9. بشكل عام، عندما تكون x^{2}+bx+c مربعا مثاليا، يمكن تحليلها دائما ك "\left(x+\frac{b}{2}\right)^{2}".
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
استخدم الجذر التربيعي لطرفي المعادلة.
x-3=0 x-3=0
تبسيط.
x=3 x=3
أضف 3 إلى طرفي المعادلة.
x=3
تم حل المعادلة الآن. الحلول هي نفسها.