تجاوز إلى المحتوى الرئيسي
تحليل العوامل
Tick mark Image
تقييم
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

\left(x+3\right)\left(x^{2}+2x-3\right)
بواسطة نسبي Root نظرية ، فان كافة جذور نسبي الخاصة بمتعدد الحدود موجودة في النموذج \frac{p}{q} ، حيث p يقسم ال-9 الثابت وq المعامل الرائدة 1. أحد الجذور هو -3 . يمكنك تحليل العنصر متعدد الحدود عن طريق قسمته على x+3.
a+b=2 ab=1\left(-3\right)=-3
ضع في الحسبان x^{2}+2x-3. حلل عوامل التعبير بالتجميع. يجب أولاً إعادة كتابة التعبير كالتالي x^{2}+ax+bx-3. للعثور علي a وb ، قم باعداد نظام ليتم حله.
a=-1 b=3
بما ان ab سالبه ، فان الa وb لديها العلامات المقابلة. بما أن a+b موجب، فهذا يعني أن للرقم الموجب قيمة مطلقة أكبر من الرقم السالب. مثل هذا الزوج الوحيد هو حل النظام.
\left(x^{2}-x\right)+\left(3x-3\right)
إعادة كتابة x^{2}+2x-3 ك \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
قم بتحليل الx في أول و3 في المجموعة الثانية.
\left(x-1\right)\left(x+3\right)
تحليل المصطلحات الشائعة x-1 باستخدام الخاصية توزيع.
\left(x-1\right)\left(x+3\right)^{2}
إعادة كتابة التعبير الكامل ذي العوامل المحددة.