تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

x-y=4
خذ بعين الاعتبار المعادلة الأولى. اطرح y من الطرفين.
x-y=4,4x-y=22
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x-y=4
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=y+4
أضف y إلى طرفي المعادلة.
4\left(y+4\right)-y=22
عوّض عن x بالقيمة y+4 في المعادلة الأخرى، 4x-y=22.
4y+16-y=22
اضرب 4 في y+4.
3y+16=22
اجمع 4y مع -y.
3y=6
اطرح 16 من طرفي المعادلة.
y=2
قسمة طرفي المعادلة على 3.
x=2+4
عوّض عن y بالقيمة 2 في x=y+4. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=6
اجمع 4 مع 2.
x=6,y=2
تم إصلاح النظام الآن.
x-y=4
خذ بعين الاعتبار المعادلة الأولى. اطرح y من الطرفين.
x-y=4,4x-y=22
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\22\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}4\\22\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&-1\\4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}4\\22\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}4\\22\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-4\right)}&-\frac{-1}{-1-\left(-4\right)}\\-\frac{4}{-1-\left(-4\right)}&\frac{1}{-1-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}4\\22\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\-\frac{4}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}4\\22\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 4+\frac{1}{3}\times 22\\-\frac{4}{3}\times 4+\frac{1}{3}\times 22\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
إجراء الحساب.
x=6,y=2
استخرج عنصري المصفوفة x وy.
x-y=4
خذ بعين الاعتبار المعادلة الأولى. اطرح y من الطرفين.
x-y=4,4x-y=22
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
x-4x-y+y=4-22
اطرح 4x-y=22 من x-y=4 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
x-4x=4-22
اجمع -y مع y. حذف الحدين -y وy، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-3x=4-22
اجمع x مع -4x.
-3x=-18
اجمع 4 مع -22.
x=6
قسمة طرفي المعادلة على -3.
4\times 6-y=22
عوّض عن x بالقيمة 6 في 4x-y=22. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة y مباشرةً.
24-y=22
اضرب 4 في 6.
-y=-2
اطرح 24 من طرفي المعادلة.
y=2
قسمة طرفي المعادلة على -1.
x=6,y=2
تم إصلاح النظام الآن.