تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

7x+5y=-3,-9x+y=-11
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
7x+5y=-3
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
7x=-5y-3
اطرح 5y من طرفي المعادلة.
x=\frac{1}{7}\left(-5y-3\right)
قسمة طرفي المعادلة على 7.
x=-\frac{5}{7}y-\frac{3}{7}
اضرب \frac{1}{7} في -5y-3.
-9\left(-\frac{5}{7}y-\frac{3}{7}\right)+y=-11
عوّض عن x بالقيمة \frac{-5y-3}{7} في المعادلة الأخرى، -9x+y=-11.
\frac{45}{7}y+\frac{27}{7}+y=-11
اضرب -9 في \frac{-5y-3}{7}.
\frac{52}{7}y+\frac{27}{7}=-11
اجمع \frac{45y}{7} مع y.
\frac{52}{7}y=-\frac{104}{7}
اطرح \frac{27}{7} من طرفي المعادلة.
y=-2
اقسم طرفي المعادلة على \frac{52}{7}، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
x=-\frac{5}{7}\left(-2\right)-\frac{3}{7}
عوّض عن y بالقيمة -2 في x=-\frac{5}{7}y-\frac{3}{7}. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{10-3}{7}
اضرب -\frac{5}{7} في -2.
x=1
اجمع -\frac{3}{7} مع \frac{10}{7} من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
x=1,y=-2
تم إصلاح النظام الآن.
7x+5y=-3,-9x+y=-11
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}7&5\\-9&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-11\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}7&5\\-9&1\end{matrix}\right))\left(\begin{matrix}7&5\\-9&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\-9&1\end{matrix}\right))\left(\begin{matrix}-3\\-11\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}7&5\\-9&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\-9&1\end{matrix}\right))\left(\begin{matrix}-3\\-11\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\-9&1\end{matrix}\right))\left(\begin{matrix}-3\\-11\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7-5\left(-9\right)}&-\frac{5}{7-5\left(-9\right)}\\-\frac{-9}{7-5\left(-9\right)}&\frac{7}{7-5\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}-3\\-11\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{52}&-\frac{5}{52}\\\frac{9}{52}&\frac{7}{52}\end{matrix}\right)\left(\begin{matrix}-3\\-11\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{52}\left(-3\right)-\frac{5}{52}\left(-11\right)\\\frac{9}{52}\left(-3\right)+\frac{7}{52}\left(-11\right)\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
إجراء الحساب.
x=1,y=-2
استخرج عنصري المصفوفة x وy.
7x+5y=-3,-9x+y=-11
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
-9\times 7x-9\times 5y=-9\left(-3\right),7\left(-9\right)x+7y=7\left(-11\right)
لجعل 7x و-9x متساويين، اضرب كل حدود طرفي المعادلة الأولى في -9 وكل حدود طرفي المعادلة الثانية في 7.
-63x-45y=27,-63x+7y=-77
تبسيط.
-63x+63x-45y-7y=27+77
اطرح -63x+7y=-77 من -63x-45y=27 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-45y-7y=27+77
اجمع -63x مع 63x. حذف الحدين -63x و63x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-52y=27+77
اجمع -45y مع -7y.
-52y=104
اجمع 27 مع 77.
y=-2
قسمة طرفي المعادلة على -52.
-9x-2=-11
عوّض عن y بالقيمة -2 في -9x+y=-11. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
-9x=-9
أضف 2 إلى طرفي المعادلة.
x=1
قسمة طرفي المعادلة على -9.
x=1,y=-2
تم إصلاح النظام الآن.