تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

2x+3y=6,4x+5y=10
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
2x+3y=6
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
2x=-3y+6
اطرح 3y من طرفي المعادلة.
x=\frac{1}{2}\left(-3y+6\right)
قسمة طرفي المعادلة على 2.
x=-\frac{3}{2}y+3
اضرب \frac{1}{2} في -3y+6.
4\left(-\frac{3}{2}y+3\right)+5y=10
عوّض عن x بالقيمة -\frac{3y}{2}+3 في المعادلة الأخرى، 4x+5y=10.
-6y+12+5y=10
اضرب 4 في -\frac{3y}{2}+3.
-y+12=10
اجمع -6y مع 5y.
-y=-2
اطرح 12 من طرفي المعادلة.
y=2
قسمة طرفي المعادلة على -1.
x=-\frac{3}{2}\times 2+3
عوّض عن y بالقيمة 2 في x=-\frac{3}{2}y+3. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=-3+3
اضرب -\frac{3}{2} في 2.
x=0
اجمع 3 مع -3.
x=0,y=2
تم إصلاح النظام الآن.
2x+3y=6,4x+5y=10
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}2&3\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\10\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}2&3\\4&5\end{matrix}\right))\left(\begin{matrix}2&3\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&5\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}2&3\\4&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&5\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&5\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-3\times 4}&-\frac{3}{2\times 5-3\times 4}\\-\frac{4}{2\times 5-3\times 4}&\frac{2}{2\times 5-3\times 4}\end{matrix}\right)\left(\begin{matrix}6\\10\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}&\frac{3}{2}\\2&-1\end{matrix}\right)\left(\begin{matrix}6\\10\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\times 6+\frac{3}{2}\times 10\\2\times 6-10\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
إجراء الحساب.
x=0,y=2
استخرج عنصري المصفوفة x وy.
2x+3y=6,4x+5y=10
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
4\times 2x+4\times 3y=4\times 6,2\times 4x+2\times 5y=2\times 10
لجعل 2x و4x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 4 وكل حدود طرفي المعادلة الثانية في 2.
8x+12y=24,8x+10y=20
تبسيط.
8x-8x+12y-10y=24-20
اطرح 8x+10y=20 من 8x+12y=24 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
12y-10y=24-20
اجمع 8x مع -8x. حذف الحدين 8x و-8x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
2y=24-20
اجمع 12y مع -10y.
2y=4
اجمع 24 مع -20.
y=2
قسمة طرفي المعادلة على 2.
4x+5\times 2=10
عوّض عن y بالقيمة 2 في 4x+5y=10. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
4x+10=10
اضرب 5 في 2.
4x=0
اطرح 10 من طرفي المعادلة.
x=0
قسمة طرفي المعادلة على 4.
x=0,y=2
تم إصلاح النظام الآن.