حل مسائل x، y
x=4
y=5
رسم بياني
مشاركة
تم النسخ للحافظة
x+y=9,3x+2y=22
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x+y=9
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=-y+9
اطرح y من طرفي المعادلة.
3\left(-y+9\right)+2y=22
عوّض عن x بالقيمة -y+9 في المعادلة الأخرى، 3x+2y=22.
-3y+27+2y=22
اضرب 3 في -y+9.
-y+27=22
اجمع -3y مع 2y.
-y=-5
اطرح 27 من طرفي المعادلة.
y=5
قسمة طرفي المعادلة على -1.
x=-5+9
عوّض عن y بالقيمة 5 في x=-y+9. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=4
اجمع 9 مع -5.
x=4,y=5
تم إصلاح النظام الآن.
x+y=9,3x+2y=22
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\22\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&1\\3&2\end{matrix}\right))\left(\begin{matrix}1&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&2\end{matrix}\right))\left(\begin{matrix}9\\22\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&1\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&2\end{matrix}\right))\left(\begin{matrix}9\\22\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&2\end{matrix}\right))\left(\begin{matrix}9\\22\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-3}&-\frac{1}{2-3}\\-\frac{3}{2-3}&\frac{1}{2-3}\end{matrix}\right)\left(\begin{matrix}9\\22\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&1\\3&-1\end{matrix}\right)\left(\begin{matrix}9\\22\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times 9+22\\3\times 9-22\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\5\end{matrix}\right)
إجراء الحساب.
x=4,y=5
استخرج عنصري المصفوفة x وy.
x+y=9,3x+2y=22
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
3x+3y=3\times 9,3x+2y=22
لجعل x و3x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 3 وكل حدود طرفي المعادلة الثانية في 1.
3x+3y=27,3x+2y=22
تبسيط.
3x-3x+3y-2y=27-22
اطرح 3x+2y=22 من 3x+3y=27 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
3y-2y=27-22
اجمع 3x مع -3x. حذف الحدين 3x و-3x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
y=27-22
اجمع 3y مع -2y.
y=5
اجمع 27 مع -22.
3x+2\times 5=22
عوّض عن y بالقيمة 5 في 3x+2y=22. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
3x+10=22
اضرب 2 في 5.
3x=12
اطرح 10 من طرفي المعادلة.
x=4
قسمة طرفي المعادلة على 3.
x=4,y=5
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}