تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

x+y=0,x+4y=1
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x+y=0
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=-y
اطرح y من طرفي المعادلة.
-y+4y=1
عوّض عن x بالقيمة -y في المعادلة الأخرى، x+4y=1.
3y=1
اجمع -y مع 4y.
y=\frac{1}{3}
قسمة طرفي المعادلة على 3.
x=-\frac{1}{3}
عوّض عن y بالقيمة \frac{1}{3} في x=-y. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=-\frac{1}{3},y=\frac{1}{3}
تم إصلاح النظام الآن.
x+y=0,x+4y=1
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&1\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&1\\1&4\end{matrix}\right))\left(\begin{matrix}1&1\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&4\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&1\\1&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&4\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&4\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-1}&-\frac{1}{4-1}\\-\frac{1}{4-1}&\frac{1}{4-1}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}&-\frac{1}{3}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\\\frac{1}{3}\end{matrix}\right)
اضرب المصفوفات.
x=-\frac{1}{3},y=\frac{1}{3}
استخرج عنصري المصفوفة x وy.
x+y=0,x+4y=1
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
x-x+y-4y=-1
اطرح x+4y=1 من x+y=0 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
y-4y=-1
اجمع x مع -x. حذف الحدين x و-x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-3y=-1
اجمع y مع -4y.
y=\frac{1}{3}
قسمة طرفي المعادلة على -3.
x+4\times \frac{1}{3}=1
عوّض عن y بالقيمة \frac{1}{3} في x+4y=1. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x+\frac{4}{3}=1
اضرب 4 في \frac{1}{3}.
x=-\frac{1}{3}
اطرح \frac{4}{3} من طرفي المعادلة.
x=-\frac{1}{3},y=\frac{1}{3}
تم إصلاح النظام الآن.