تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

2x+3y=13,x-y=4
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
2x+3y=13
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
2x=-3y+13
اطرح 3y من طرفي المعادلة.
x=\frac{1}{2}\left(-3y+13\right)
قسمة طرفي المعادلة على 2.
x=-\frac{3}{2}y+\frac{13}{2}
اضرب \frac{1}{2} في -3y+13.
-\frac{3}{2}y+\frac{13}{2}-y=4
عوّض عن x بالقيمة \frac{-3y+13}{2} في المعادلة الأخرى، x-y=4.
-\frac{5}{2}y+\frac{13}{2}=4
اجمع -\frac{3y}{2} مع -y.
-\frac{5}{2}y=-\frac{5}{2}
اطرح \frac{13}{2} من طرفي المعادلة.
y=1
اقسم طرفي المعادلة على -\frac{5}{2}، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
x=\frac{-3+13}{2}
عوّض عن y بالقيمة 1 في x=-\frac{3}{2}y+\frac{13}{2}. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=5
اجمع \frac{13}{2} مع -\frac{3}{2} من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
x=5,y=1
تم إصلاح النظام الآن.
2x+3y=13,x-y=4
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}2&3\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\4\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}2&3\\1&-1\end{matrix}\right))\left(\begin{matrix}2&3\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-1\end{matrix}\right))\left(\begin{matrix}13\\4\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}2&3\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-1\end{matrix}\right))\left(\begin{matrix}13\\4\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-1\end{matrix}\right))\left(\begin{matrix}13\\4\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-3}&-\frac{3}{2\left(-1\right)-3}\\-\frac{1}{2\left(-1\right)-3}&\frac{2}{2\left(-1\right)-3}\end{matrix}\right)\left(\begin{matrix}13\\4\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{5}\\\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}13\\4\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 13+\frac{3}{5}\times 4\\\frac{1}{5}\times 13-\frac{2}{5}\times 4\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\1\end{matrix}\right)
إجراء الحساب.
x=5,y=1
استخرج عنصري المصفوفة x وy.
2x+3y=13,x-y=4
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
2x+3y=13,2x+2\left(-1\right)y=2\times 4
لجعل 2x وx متساويين، اضرب كل حدود طرفي المعادلة الأولى في 1 وكل حدود طرفي المعادلة الثانية في 2.
2x+3y=13,2x-2y=8
تبسيط.
2x-2x+3y+2y=13-8
اطرح 2x-2y=8 من 2x+3y=13 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
3y+2y=13-8
اجمع 2x مع -2x. حذف الحدين 2x و-2x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
5y=13-8
اجمع 3y مع 2y.
5y=5
اجمع 13 مع -8.
y=1
قسمة طرفي المعادلة على 5.
x-1=4
عوّض عن y بالقيمة 1 في x-y=4. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=5
أضف 1 إلى طرفي المعادلة.
x=5,y=1
تم إصلاح النظام الآن.