\left| \begin{array} { c c c } { m } & { n } & { p } \\ { 3 } & { 0 } & { 6 } \\ { 1 } & { 3 } & { 2 } \end{array} \right|
تقييم
9\left(p-2m\right)
تكامل w.r.t. p
-18mp+\frac{9p^{2}}{2}+С
مشاركة
تم النسخ للحافظة
det(\left(\begin{matrix}m&n&p\\3&0&6\\1&3&2\end{matrix}\right))
البحث عن محدد المصفوفة باستخدام طريقة الأقطار.
\left(\begin{matrix}m&n&p&m&n\\3&0&6&3&0\\1&3&2&1&3\end{matrix}\right)
وسّع المصفوفة الأصلية بتكرار أول عمودين كالعمودين الرابع والخامس.
n\times 6+p\times 3\times 3=6n+9p
بدءاً من الإدخال في أعلى اليسار، اضرب بطول الأقطار واجمع حواصل الضرب الناتجة.
3\times 6m+2\times 3n=18m+6n
بدءاً من الإدخال في أسفل اليسار، اضرب لأعلى بطول الأقطار واجمع حواصل الضرب الناتجة.
6n+9p-\left(18m+6n\right)
اطرح مجموع حواصل الضرب القطرية العلوية من مجموع حواصل الضرب القطرية السفلية.
9p-18m
اطرح 18m+6n من 6n+9p.
det(\left(\begin{matrix}m&n&p\\3&0&6\\1&3&2\end{matrix}\right))
إيجاد محدد المصفوفة باستخدام طريقة توسع المحددات (تعرف أيضاً بتوسع المتعامل).
mdet(\left(\begin{matrix}0&6\\3&2\end{matrix}\right))-ndet(\left(\begin{matrix}3&6\\1&2\end{matrix}\right))+pdet(\left(\begin{matrix}3&0\\1&3\end{matrix}\right))
لتوسيع المحددات، اضرب كل عنصر في الصف الأول في المحددة الخاصة به، وهي محدد المصفوفة 2\times 2 الذي تم إيجاده بواسطة حذف الصف والعمود اللذان يحتويان على هذا العنصر، ثم اضرب في علامة موضع العنصر.
m\left(-3\times 6\right)-n\left(3\times 2-6\right)+p\times 3\times 3
بالنسبة ل\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 المصفوفة ، يتم ad-bc المحدد.
m\left(-18\right)+p\times 9
تبسيط.
9p-18m
اجمع القيم للحصول على الناتج النهائي.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}