تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

x+2y=0,5x+7y=3
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x+2y=0
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=-2y
اطرح 2y من طرفي المعادلة.
5\left(-2\right)y+7y=3
عوّض عن x بالقيمة -2y في المعادلة الأخرى، 5x+7y=3.
-10y+7y=3
اضرب 5 في -2y.
-3y=3
اجمع -10y مع 7y.
y=-1
قسمة طرفي المعادلة على -3.
x=-2\left(-1\right)
عوّض عن y بالقيمة -1 في x=-2y. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=2
اضرب -2 في -1.
x=2,y=-1
تم إصلاح النظام الآن.
x+2y=0,5x+7y=3
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&2\\5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\3\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&2\\5&7\end{matrix}\right))\left(\begin{matrix}1&2\\5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&7\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&2\\5&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&7\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&7\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-2\times 5}&-\frac{2}{7-2\times 5}\\-\frac{5}{7-2\times 5}&\frac{1}{7-2\times 5}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{3}&\frac{2}{3}\\\frac{5}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 3\\-\frac{1}{3}\times 3\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
إجراء الحساب.
x=2,y=-1
استخرج عنصري المصفوفة x وy.
x+2y=0,5x+7y=3
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
5x+5\times 2y=0,5x+7y=3
لجعل x و5x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 5 وكل حدود طرفي المعادلة الثانية في 1.
5x+10y=0,5x+7y=3
تبسيط.
5x-5x+10y-7y=-3
اطرح 5x+7y=3 من 5x+10y=0 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
10y-7y=-3
اجمع 5x مع -5x. حذف الحدين 5x و-5x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
3y=-3
اجمع 10y مع -7y.
y=-1
قسمة طرفي المعادلة على 3.
5x+7\left(-1\right)=3
عوّض عن y بالقيمة -1 في 5x+7y=3. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
5x-7=3
اضرب 7 في -1.
5x=10
أضف 7 إلى طرفي المعادلة.
x=2
قسمة طرفي المعادلة على 5.
x=2,y=-1
تم إصلاح النظام الآن.