تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

2x+y=5,-x+5y=3
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
2x+y=5
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
2x=-y+5
اطرح y من طرفي المعادلة.
x=\frac{1}{2}\left(-y+5\right)
قسمة طرفي المعادلة على 2.
x=-\frac{1}{2}y+\frac{5}{2}
اضرب \frac{1}{2} في -y+5.
-\left(-\frac{1}{2}y+\frac{5}{2}\right)+5y=3
عوّض عن x بالقيمة \frac{-y+5}{2} في المعادلة الأخرى، -x+5y=3.
\frac{1}{2}y-\frac{5}{2}+5y=3
اضرب -1 في \frac{-y+5}{2}.
\frac{11}{2}y-\frac{5}{2}=3
اجمع \frac{y}{2} مع 5y.
\frac{11}{2}y=\frac{11}{2}
أضف \frac{5}{2} إلى طرفي المعادلة.
y=1
اقسم طرفي المعادلة على \frac{11}{2}، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
x=\frac{-1+5}{2}
عوّض عن y بالقيمة 1 في x=-\frac{1}{2}y+\frac{5}{2}. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=2
اجمع \frac{5}{2} مع -\frac{1}{2} من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
x=2,y=1
تم إصلاح النظام الآن.
2x+y=5,-x+5y=3
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}2&1\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}2&1\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}2&1\\-1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-\left(-1\right)}&-\frac{1}{2\times 5-\left(-1\right)}\\-\frac{-1}{2\times 5-\left(-1\right)}&\frac{2}{2\times 5-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}&-\frac{1}{11}\\\frac{1}{11}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}\times 5-\frac{1}{11}\times 3\\\frac{1}{11}\times 5+\frac{2}{11}\times 3\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
إجراء الحساب.
x=2,y=1
استخرج عنصري المصفوفة x وy.
2x+y=5,-x+5y=3
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
-2x-y=-5,2\left(-1\right)x+2\times 5y=2\times 3
لجعل 2x و-x متساويين، اضرب كل حدود طرفي المعادلة الأولى في -1 وكل حدود طرفي المعادلة الثانية في 2.
-2x-y=-5,-2x+10y=6
تبسيط.
-2x+2x-y-10y=-5-6
اطرح -2x+10y=6 من -2x-y=-5 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-y-10y=-5-6
اجمع -2x مع 2x. حذف الحدين -2x و2x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-11y=-5-6
اجمع -y مع -10y.
-11y=-11
اجمع -5 مع -6.
y=1
قسمة طرفي المعادلة على -11.
-x+5=3
عوّض عن y بالقيمة 1 في -x+5y=3. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
-x=-2
اطرح 5 من طرفي المعادلة.
x=2
قسمة طرفي المعادلة على -1.
x=2,y=1
تم إصلاح النظام الآن.